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The solitary wave in water of variable depth. Part 2 
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University of Melbourne 

(Received 10 September 1970) 

This paper examines the deformation of a solitary wave due to a slow variation 
of the bottom topography. Differential equations which determine the slow 
variation of the parameters of a solitary wave are derived by a certain averaging 
process applied to the exact inviscid equations. The equations for the parameters 
are solved when the bottom topography varies only in one direction, and when the 
wave evolves from a region of uniform depth. The variation of amplitude with 
depth is determined and compared with some recent experimental results. 

1. Introduction 
This paper is primarily concerned with the deformation of a solitary wave 

caused by a slow variation of the bottom topography. The solitary wave, on a 
constant still water depth h, is a permanent progressing wave form consisting 
of a single elevation above the undisturbed surface, whose amplitude a and 
effective length A (e.g. the width when the free surface is one-tenth of its 
maximum) are such that a/h and h2/h2 are comparable small quantities. It was 
first observed by Russell (1837), and established theoretically by Lavrent’ev 
(1943, 1947) and Friedrichs & Hyer (1954); earlier Boussinesq (1871, 1872) had 
constructed a theoretical solution to the lowest order in a/h. In  a previous paper 
(Grimshaw 1970) the one-dimensional modulations formed on the Boussinesq 
solitary wave by a slow variation of the depth were considered. Using the Bous- 
sinesq equations an asymptotic solution was obtained which described a slowly 
varying solitary wave; the slow variations were described by a set of transport 
equations. These were solved in the case that the wave develops from a region 
where h is constant; it was found that the variation of the amplitude is determined 
by conservation of energy in the wave, and this causes a to vary as h-l. 

In  this paper the previous results are extended to a finite value of a/h and to 
two-dimensional modulations. In 0 3 an asymptotic analysis of the exact inviscid 
equations is presented; a small parameter ,5 is introduced so that IVh/hl is 0(,5), 
and /3-1 is a length scale much greater than the length of the wave. An asymptotic 
expansion is used whose leading term is a modulated solitary wave; that is, the 
amplitude, and the other parameters associated with the wave, vary on a length 
scale of O(P-l). Transport equations for these parameters are derived from con- 
servation laws. In $ 4  these transport equations are solved in the case when the 
wave develops from a region where h is constant; the variation of the amplitude 
is determined by conservation of energy in the wave. In  9 2 the solitary wave is 
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calculated up to the term of O( ( a / l ~ ) ~ ) ,  and, correct to this order, an expression for 
the variation of alh with h is derived. The results are graphed and compared with 
some recent experimental results on the shoaling of solitary waves by Camfield & 
Street (1  969). The theory and experiments would appear to  be in reasonable 
agreement for small bottom slopes. 

2. The solitary wave 
It will be assumed that the flow is irrotational and that the fluid is inviscid, 

incompressible and of constant density. It may be anticipated that the Froude 
number will be close to critical, and so we choose a length scale h,, a velocity 
scale (gh,)+ and a time scale h,(gh,)-h, where h, is a typical value for the still-water 
depth. The equations of motion for the velocity potential $(x, z, t) are 

V2$+$zz = 0 for - h  < z < 6, (2.1) 

Vq5.Vh+$z = 0 for z = -h ,  (2.2) 

where x = (x, y) are the horizontal co-ordinates, V = (a/ax; 8/89> is the horizontal 
gradient operator, x = [(x, t )  is the free surface, and z = - h(x)  is the undisturbed 
depth. Equations (2.2) and (2.3) are kinematic boundary conditions and (2.4) 
is the condition that the pressure be constant on the free surface. The horizontal 
velocity component is u (equals V#), and the vertical velocity component is w 

I n  the remainder of this section it will be assumed that h is constant. We shall 
seek a solution of (2.1), (2.2), (2.3) and (2.4) for which 6, W, w are functions only 
of z, and the phase 

(2.5) 

(equals $A. 

8 = K ( V .  x - ct ) ,  

where K (wave-number) and c (wave speed) are constants, and v is a constant 
horizontal unit vector; c = cv is the wave velocity. Thus we seek a solution of 
the form 

(;= B+E(8), 

u = A+U(8,x), w = W(B,Z),  (2.7) 

where A, B are constants representing the mean velocity and mean height 
respectively, and defined so that E, U, W aid all their derivatives vanish as 
(81 + 00 (we are anticipating that any such solution will be even in 8). The 
corresponding form for the potential q5, consistent with (2.4), is 

$ = A.x-Ct+P(B,z ) ,  (2.8) 

where U = v U ,  U = K F ~  and W = FB, and Cis a constant, related to the Bernoulli 
constant. Substitution of (2.6) and (2.8) into (2.4), and letting 181 -+ co implies 
that 
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further substitution of (2.6) and (2.8) into the equations of motion gives 

K~F,~+F, , , ,  = 0 for -h* < x* < E ,  (2.10) 

F,, = 0 for z* = -h*, (2.11) 

- K C * E ~  + K ~ E ,  F, - Fz, = 0 for z* = E ,  (2.12) 

- KC*F, + ~ ( K ~ F ;  + FE) + E = 0 for x* = E ,  (2.13) 

where C* z= c-A.v, h* = h+B, Z* = Z-B.  (2.14) 

Without loss of generality, we may select the origin of 8 a t  the crest of the wave, 

(2.15) 
so that 

For small a,  we use the shallow water expansion method of Friedrichs & 

q,=, = a, E,I,=, = 0. 

Hyers, and put 

(2.16) I = aIeo(9) + ae1(4) + a2e2($) + f .  .I> 
F(B,z*) = a~(F,(~,~*)+a~~(~,z*)+a~F~(~,z*)+ ...}, 

c* = c,+ac,+a2c,+a3c3+ ..., 
K = K0{l+aKl+a2K2+ ...}, 

and K,$ = ate ,  

where each e,, a9Ja$, a9Jaz* ,  i = 0 ,1 ,2 ,  ... vanish as (81 4 co. Friedrichs &, 
Hyers (1954) proved that this expansion method does yield an existence proof 
for the solitary wave, and thereby demonstrate that it will a t  least provide an 
asymptotic description of the exact solution. It is customary to  first look for a 
periodic solution of the type (2.16) (the cnoidal waves of Korteweg & de Vries), 
and then find the solitary wave as the infinite period limit. By this technique 
Laitone (1960) calculated the solitary wave up to O(a2),  and Chappelear (1962) 
up to O(a3). It is of some interest that the solitary wave may be found directly, 
and we give an outline of the procedure below. 

First, substitution of (2.16) into (2.10) and (2.11) gives 

9, = fo($), Fl = fl($) - t ( z *  + h*)2&'($), etc. (2.17) 

The boundary conditions (2.12) and (2.13) then become, respectively, 

-a%(c,+acl+...)(1+aK1+...)(e;+ae;+...)+a8fAeh, 

-a+( - h*f: +a{ - h*f;- 2~,h*j; +i?~,*~fP - e, f;} + . . .) -- 0, ] (2.18) 

a(e, + ae, + . . .) + $a2(fh)2 + . . . 
- a(c,+ ac, + . . .) (1 + aK1 + . . .) ( f A +  a{f;-  $h*y[}+ ...) = 0, (2.19) 

where the primes denote differentiations with respect to $. To the lowest order 
in a ,  these equations give 

and so 

.c,eA+h*f;= 0, e,-c,f;= 0, 

cg = h*, e, = h*&fA. 

To the next lowest order in a,  we have 

(2.20) 
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If these are to be compatible, then 

$h*3e:+$eg- 2c,c,e, = 0.  (2.22) 

The solution of this which satisfies (2.15) and vanishes as 161 + og is 

e, = s e c h 2 p ~ ,  p2 = 2c,co = 1. (2.23) 

This is the Boussinesq solitary wave. Applying the boundary conditions (2.18) 
and (2.19) yields, a t  each stage, a pair of equations similar to (2.21), with el, and 
f ;  replaced by ei and fi, i = 2 , 3 ,  ... respectively. The compatibility condition, 
at each stage, takes the form 

+h*3e;+3e0e,-e, = coHi (i = 1,2,  ...), (2.24) 

where Hi is known in terms of e,, ci+l and K ~ .  For example, 

HI = e,(2c2 - $gh*-a - 2 ~ ~ h * - * )  + ei(3h*-% + 3 ~ , h * - t )  + ei( - $h*-B). (2.25) 

The homogeneous part of (2.24) has e; for a solution, and so (2.24) may be 
integrated once to give 

ih*3(e;eh-eie,") = - c ,  e;Hid$ (i = 1,2, ...). 1; (2.26) 

The application of the condition (2.15) implies that 

J o m e ; H l d S = O  ( i =  l , ~ ,  ...I (2.27) 

and this determines c,+~. To keep the expansion well-ordered, we now impose 
the condition that e,  should vanish as 101 -+ co at least as fast as e,; this implies 
that the coefficient of e, in the right-hand side of (2.25) must vanish, and this 
determines K ~ .  Equation (2 .26)  may then be integrated to give e,. 

This procedure was carried out as far as the terms e2 and S2, and gave results 
agreeing with those quoted by Chappelear (1962). We find that, if 

ct = a/h*, 
then, omitting terms of O ( a 4 ) ,  

(2.28) 

(2 .30)  
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so that p$ = h*-l($oc)* ( K I K ~ )  O r 1 .  The formulae (2.29) may be used to estimate 
the maximum height of the solitary wave. If we adopt the criterion used by 
Stokes that a attains its maximum value when the fluid velocity of the crest 
equals the wave speed, so that the crest attains the shape of a 120" angle wedge, 
we find that amax = 1.21. As an alternative Laitone (1960) proposed the criterion 
that a attains its maximum when the vertical velocity component on the free 
surface vanishes (other than at  the crest); this gives amax = 0.61. Byatt-Smith 
(1970) has shown that if the solitary wave crest is a 120" angle wedge then 
,amax = +czh*-l; using (2.30) this gives amax = 0.92. These results must be re- 
garded as unsatisfactory compared with the estimate amax = 0-78 obtained by 
McGowan (1894) from a theoretical study of the highest wave. Recently Byatt- 
Smith, in a numerical study of the highest wave, obtained amax = 0-86. Cam- 
field & Street (1969) found experimentally that amax = 0.73. 

In the next section it is found useful to define the quantities 

$ = J m  Ed8, and "=jm UdO. (2.31) 

JC-~E is the mass (apart from a constant proportionality factor ph, where p is 
the density of the fluid) carried forward by the wave; K - I ~  is easily shown to 
be independent of z. From (2.39) we have 

-m -m 

1 B = h*(2a- :~+&~a3+ . . . ) ,  

0 = h*~(2a-~az+&a3+ ...). 
(2.32) 

3. Modulations caused by a slowly varying depth 
It will now be supposed that h is a function of x, but is slowly varying in the 

sense that h varies little over a distance comparable with the effective length of 
the wave. Thus we shall assume that h = h ( X )  where 

X =Px, T =Pt ,  (3.1) 
where P is a small parameter. In  this section we shall find equations which govern 
the modulations to the solitary wave of 3 2 caused by this slow variation of the 
depth. This will be achieved by assuming that there is an asymptotic solution 
of the exact equations (2.1) to (2.4), whose leading term may be represented by 
the solution of 5 2 ,  but the parameters A, B, C, c and K (equals KV) which deter- 
mine that solution are now slowly varying and so functions of X, T. Whitham 
(1965a, b )  has considered problems of this type for periodic slowly varying wave 
trains governed by non-linear, dispersive equations. The procedures described 
in this section are closely related to the procedures developed by Whitham and 
other workers in this field. 

Thus we are motivated to seek an asymptotic solution of the exact equations 
(2.1) to (2.4) of the form 

g = 4x9 T )  +we;  x, T) +P(;1(6; x, T) + 0(PZ) ,  
u = A(X, T )  +u(e, 2; x, T) +pul(e, 2; x, T )  + o(pz), 

= w(e, 2; x , ~ )  +pwl(e, 2; x, T) + o(pz). 
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A, Bare determined so that E, U and K and all their derivatives with respect to 8 
vanish as 181 + 00. The phase 6 is such that 

v,8 = K, ot = - KC (3.3) 

and so 8 = P-lO(X, T ) ,  where K = VxO, - KC = OT. (3.4) 
8 is a fast variable, which has yet to be determined, and X, T are slow variables; 
(3.2) is a two-scale asymptotic expansion of a type familiar in the context of 
ordinary differential equations. Since derivatives with respect to B and z are 
O(l) ,  while derivatives with respect to X and T are O(P), it  is clear that when 
(3.2) and the corresponding expression (3.7) for the potential $ (derived below), 
are sustituted into (2.1) to (2.4), the terms of 0(1 )  are just (2.10) to (2.14) which 
describe the solitary wave of 3 2, except that A, B, C, c and K are now functions 
of X, T. The transport equations which determine these parameters are found 
by applying the principle that the asymptotic expansion (3.2) is to be well 
ordered, i.e. pel, Pu, and Pw, are O ( p )  with respect to B+ E ,  A + U, and W re- 
spectively for all 8. Thus we shall assume that 

A? = lim u,, BF = lim el, Dt = lim w, ( 3 . 5 )  
O+fW e-++m e++w 

all exist (and are functions of X, T and z) ,  and all derivatives of u,, el and w, with 
respect to 8 vanish as 101 + 00. Then we define 

(3.6) I A1 = &(A1++A,), [uJ = (A1+-Ai),  U , =  Ul-A,, 

B 1 - 1  - z(Bt+B,-), [ell= (B1+-%), El = cI-Bl, 
D, = &(Dl'+D,), [w,] = (Dl f -Dy) ,  w, = W1-D,. 

It may be noted that this notation differs slightly from that used in Grimshaw 
(1970). 

Next we seek an asymptotic expansion for the potential Q, such that u = VQ,, 
w = 9,. The existence of such a potential implies that A,, and [u,] are independent 
of z, and so are functions of X, T alone (and also implies that A is independent 
of 2 ) .  We find that 

Q, = ~ - ' $ ( X , ~ ) + F ( ~ , ~ ; X , T ) + $ , ( X , ~ ) + ~ F 1 ( 6 , ~ ; X , ~ ) +  ..., (3.7) 

where the remaining terms are 0(p2)  if they involve 8, and O(P) otherwise, and 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

$t = -c- cu +P( -c;-cv. u1 +FT + cv. VxF) + o(P2). (3.12) 

The substitution of (3.7) into (2.1) and (2.2) yields (2.10) and (2.11) as the terms 
of O( l ) ,  and a further two equations for the terms of O ( P ) ;  these latter equations, 
when evaluated as 8 -+ 5 00, imply that 

[Wll = 0, (3.13) 

and D, = -zdivxA-divx(hA). (3.14) 
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(It may be noted that (2.10) and (2.11) imply that W tends to zero as 181 +m.) 
Again, substitution of (3.7) into the consistency relation 

a 
- (V4)  - V(4,) = 0, at 

yields for the term of O(p),  

(3.15) 

A,+VXC+K-~U(KT+ V ~ ( K C ) }  = 0, (3.16) 

and letting 181 -+ co, we have 
A,+VxC = 0, (3.17) 

whence K T + V X ( K C )  = 0. (3.18) 

These two equations are just the consistency relations for $ and 0 respectively 
and provide two transport equations. A third is (2.9). Two more are needed, and 
may be determined as follows. 

The substitution of (3.2) and (3.12) into the boundary conditions (2.3) and 
(2.4) yield (2.12) and (2.13) as the terms of O ( l ) ,  and a further two equations for 
the terms of O(p) ;  these latter equations, when evaluated as 8 -+ -t co, imply that 

Cl = B,+A.Al,  (3.19) 

(3.20) [El ]  = c". [Ul] - ( K - V 7 j T  - cv. V x ( K - l O ) ,  

and B, + 0,. (h"A) = 0, (3.21) 

where C" = CV-A, C* = v.c"; 

0 is defined in (2.31) and is a function of X, T alone. Equation (3.21) is a fourth 
transport equation, which together with f2.9) and (3.17) determines A, B and C. 
The terms of O(p)  obtained from the substitution of (3.2) and (3.12) into (2.1) 
to (2.4) now provide a linear boundary-value problem for El ,  Fl. The fifth trans- 
port equation may presumably be found by subjecting the solution of this 
problem to the principle that El, u1 and w1 are bounded functions of 8. This 
procedure was carried out in the simpler context of the Boussinesq equations 
by Grimshaw (1970). Here we shall adopt the alternative procedure of assuming 
that El ,  u1 and w1 exist as bounded functions of 8, and seeking the transport 
equations directly from averaged conservation laws (the procedure is analogous 
to that used by Whitham ( 1 9 6 5 ~ )  for slowly varying periodic wave trains). 

The typical conservation law has the form 

appt+V, .q+pr  = 0, (3.22) 

where p, q and r are functions of x, t and r is proportional to a component of 
Vx h, its presence being due to the inhomogeneity of the medium. In the present 
context there are three such conservation laws, there being one for mass, 
momentum and energy respectively. 

(i) Mass: 
" Y  

p =  5, q = J 5  uax, r = 0. 
-la 

(ii) Momentum: 

(3.23) 
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(iii) Energy: 

where the pressure 
77 = p( -(bt-+Iu[2-*w2-z), (3.26) 

and p is the density. In (3.24) q is a dyadic and I is the unit dyadic. Since t;, U, w 
have expansions of the form (3.2) it follows that p ,  q, r have similar expansions, 

p = x, T) +PpAO; x, T) + 0(PZ). (3.27) 
e.g. 

Then our hypotheses on the expansions of 5, etc., imply that 

P$ = lim pi (i = 0 , I )  (3.28) 
O - t i r n  

exist, and we define 
- 
pi = *(Pi++P,), [pi] = PZ- Pi (i = 0 , l ) .  (3.29) 

Since p,, etc., are even in 8, [13,,], etc., vanish but [pl], etc., are in general not 
zero. Also we observe that 

pid6 (i = 0,l) .  

Next we define the reduced (or wave) quantity by 

and its wave average by 

- 
p = po-po, 

(3.30) 

(3.31) 

(3.32) 

We now substitute the expansion (3.27) into (3.22) and equate to zero the t,erm 
of O( l) ,  and the term of O(p) ;  these give respectively 

- c P + v . Q  = 0, (3.33) 

and (3.34) 

Equation (3.33) is satisfied identically by the solitary wave solution of $2 .  Then 
we take the mean of (3.34), i.e. the averaging procedure defined by (3.30); this 
yields 

Next we take the wave average of (3.34), i.e. the averaging procedure defined 
by (3.32); this yields 

p T +  0,- 6 + & - K C [ P l ]  + K - [ql] = 0. (3.36) 

The equations (3.35) and (3.36) are transport equations. The set obtained from 
(3.35) using (3.23), (3.24) end (3.25) involve only A, B, C and may be derived 
from (2.9), (3.16) and (3.21). Equation (3.36) may be put in the form 

POT + vx a 0 0  -k Ro + pT -k vx . Q + R - K C p l e  + K . qlo = 0. 

FoT+vx.$,+~o = 0. (3.35) 

(3.37) 
P T  + vX - (cp  + 8') + 2 = K ( C b l ]  - [v . ql]}, 

where Q' = Q-v(v .0 ) .  
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The equation (3.37) may now be applied to (3.23), (3.24) and (3.25) in turn. 

(3.38) 
(i) Mass: 

-@+V,.{(C+A').E} = K{c*[E~]-~*[v.u~]}, 8T 

whereA'isthecomponentofAnormaltov(itmaybenoted that c + A  = c*v+ A). 
Equation (3.38)) together with (3.20) may be regarded as determining [ E l ]  and 
[v . ul], since it follows from (3.11) that 

619 

a 

A'.[u,] = A'.VX(K-'O). (3.39) 

(ii) Momentum: The equations obtained from (3.24) will be omitted, as they 
may be derived from the other transport equations and will not be needed in the 
sequel. 

(iii) Energy: The equation obtained from (3.25)) after elimination of [El] and 
[uJ through (3.20), (3.38) and (3.39), and subsequent simplification using (2.9), 
(3.17)) (3.18)) (3.21) and (3.22) is 

a& a -+VX.(c8)+A.-{v(c*8-h*@}+Vx.{Ac{c*@- h*@} aT aT 
+ (c*O-.E)VX. (h*A) = 0, (3.40) 

where (3.41) 
-h* 

K-W is the energy carried by the wave. Equation (3.40) is the fifth transport 
equation. 

4. Solution of the transport equations 

displayed here for convenience: 
The transport equations are (2.9), (3.17), (3.18), (3.21) and (3.40) and are 

C = B+&IAI2, (4.1) 

Arp+VxC = 0, (4.2) 

(4.3) 

K,+VX(KC) = 0, (4.4) 

B ,  + Vx. (h*A) = 0, 

&,+Vx. (c8)+A.{v(c*8-h*~)},+Vx.{Ac(c*~-h*~)) 
+(C*O-B)Vx.(h*A) = 0. (4.5) 

The first three equations involve only A, B, C; they are, not unexpectedly, just 
the shallow-water equations, and can, in principle, be solved. Thus A, B can be 
regarded as known when solving (4.4)) and (4.5). In particular if A, B both vanish 
at  T = 0 for all X, then they vanish for all T. This situation may arise, for example, 
when the wave evolves from a region where h is constant (say h = 1 for X 6 0)  
and the wave profile is initially exactly that of a solitary wave. Under these 
conditions the equations to be solved are just (4.4), and (4.5) with the last three 
terms omitted. Also it is clear that 

d = K v ,  (4.6) 
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FIGURE 1. Amplitude variation with depth. -, theoretical results; - - - -, experimental 
results of Camfield & Street (1969) for beach slope 0.01. (a )  Initial amplitude a, = 0.1, 
( b )  u0 = 0.2, (c) a, = 0.4. 
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where V is a function only of c and h (alternatively both V and c are functions of a, 
defined in (2.28), and h). Equations (4.4) and (4.5) may then be rewritten in the 
form 

(4.7) 

(4.8) 

(4.9) 

Equations (4.7) and (4.9) provide two equations for V and v (or c and v), and 
(4.8) then determines K .  

VT+CVX. ( V V )  = 0, 

KT + V . V x ( K C )  = 0, 

VT + cv. v,v + VXC - v(v. V X C )  = 0. 

- 

- 

- 

- 

0.4 

0.3 

a0 
0.2 

0.1 

-0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

hb 

FIGURE 2. The variation of breaking depth with initial amplitude. -, theoretical results 
using a,  = 0.86; - - - - -, theoretical results using am = 0.75; A ,  experimental results of 
Camfield & Street (1969) for beach slope 0.01. 

Since V is the wave average of the energy density with respect to the x scale, 
(4.7) states that the wave energy is preserved, being carried a t  a speed c in the 
direction v. For small amplitudes a, c is approximately h4 and (4.9) determines 
v from h; with v known, (4.7) may be integrated using familiar procedures. For 
finite amplitudes (4.7) and (4.9) are coupled and form a system of hyperbolic 
equations, which may presumably be integrated numerically using well-known 
techniques. Here, however, we shall merely observe that solving for the charac- 
teristics leads to the result that weak discontinuities (in V and v) will propagate a t  
an angle y to v with the local speed c (cosy 2 {(PIC) ac/aV)tsiny). 

If h depends only on X, so that the modulation is entirely one-dimensional, 
then v is constant and (4.7) reduces to 

V, + CV, = 0 (4.10) 

where c = c( V ,  h ( X ) ) .  The general solution of (4.10) is 

V = WTO), 

where To = T-sadsjc(Y(T,) ,h(s))~- l .  (4.11) 



622 R. Crimshaw 

If the wave is initially uniform (for example, evolving from a region X < 0 
where h = l), then &!(To) is a constant. It may be shown from (2.29) and (2.30) 

V = ($ah2)% (1 +&a - 0-294a2 + O(a3)}8, (4.12) that 

where a = ah-l. Thus a, and hence a, may be determined as a function of h from 

a+&&- 0 . 2 9 4 ~ ~  z h-2(a,+&ai-0-294~$),  (4.13) 

where a, is the value of a when h = 1. For small a, this implies that a varies as 
h-l. For finite a, (4.13) was treated as a cubic for a and solved numerically. 
The results are presented in figure 1, which also contains some experimental 
results of Camfield & Street (1969) for a beach of constant slope 0.01. They also 
performed experiments with other slopes and observed that the rate of increase 
of a as h decreases is made smaller by increasing the beach slope. The most 
unsatisfactory feature of the present theory would seem to be its inability to 
predict the variation of a with h,. If we accept the criterion that the wave 
will break when a = amax,  then substitution into (4.13) determines the breaking 
depth h, as a function of a,. Figure 2 shows that the results of t.his calculation 
when amax = 0.86 (a theoretical value) and when amax = 0.75 (an experimental 
value obtained by Camfield & Street for small slopes); also shown are some 
experimental values obtained by Camfield & Street (1969). 

R E F E R E N C E S  

BOUSSINESQ, J. 1871 Comptes Rendm, 72, 755-759. 
BOUSSINESQ, J. 1872 J .  Math., Liouville, 17, 55-108. 
BYATT-SMITH, J. G. B. 1970 Proc. Roy. SOC. A 315, 405-418. 
CAMFIELD, F. E. & STREET, R. L. 1969 J .  Wates-caays Harbours Dkv., Proc. A.S.C.E. 95, 

1-22. 
CHAPPELEAR, J. E. 1962 J .  Geophys. Res. 67, 4693-4704. 
FRIEDRICHS, K. 0. & HYERS, D. H. 1954 Comrn. Pure Appl .  Math. 7, 517-550. 
GRIMSHAW, R. 1970 J .  Fluid Mech. 42, 639-4356. 
LAITONE, E. V. 1960 J .  Fluid Mech. 9, 430-444. 
LAVRENT’EV, M. A. 1943 C.R. (Dokhdy) Acad. Sci. URSS, 41, 275-277. [Reproduced in 

LAVRENT’EV. M. A. 1947 Akad. Nauk. Ukrain. RSR., Zb. Prac’ Inst. Mat. no. 8, 13-69. 

MCCOWAN, J. 1894 Phil. Mag. 38, 351-358. 
RUSSELL, J. S. 1837 Report on Waves, Meeting of the British Association for the Advance- 

WHITHAM, G .  B.  1965a Proc. Roy. Xoc. A 283, 238-261. 
WHITEAM, G. B. 1965b J .  Fluid Mech. 22, 273-283. 

Am. Math. SOC. Transl. no. 102, 51-53, 1954.1 

[Translated in Am. Math. SOC. Trans2. no. 102, 3-50, 1954.1 

ment of Science, Liverpool, p p .  417-496. 


